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Overview

• Face recognition over changes in image & appearance
– human ability 

• face representations in deep convolutional neural 
networks (DCNNs)
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How many identities here?

Jenkins et al. (2011)





Hallmark of Face Familiarity

• generalize identification over change in:
• pose 
• illumination
• expression
• appearance 

• Progress - face recognition software > 2014
– Deep convolutional neural networks (DCNNs)
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“In-the-wild” images
• DCNNs effective over large variations in viewpoint 

and illumination and expression (PIE)

image credits (left to right):
“Dwayne Johnson at The Game Plan Premiere in Leicester Square” by Fabio (CC BY-NC-SA 2.0)
“Fast Five Cast” by Jack Zalium (CC BY-NC 2.0)
“Dwayne Johnson” by fmovies st (public domain)
“The Rock-Dwanye Johnson” by Talk Radio News Service (CC BY-NC-SA 2.0)



• multiple layers of simulated neurons
– convolve and pool image data

• representations expand in early and intermediate layers
– small number of fully connected layers

• representations compressed in top layer
– final representation of image emerges at top layer

• highly compact
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Deep Convolutional Neural Nets 
(DCNNs) (Krizhevsky, et al., 2012)



Deep Convolutional Neural Nets 
(DCNN)
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Face Identification (DCNNs)
• state-of-the-art in automatic face identification 

(Ranjan et al., 2018;  Taigman et al., 2014; Parkhi et al., 2015; Schroff et al., 2015)

• “top-level” face representation

image credit
“Dwayne Johnson” by fmovies st (public domain)



Representations used 
for face identification

≈≠

image credits (left to right)
“Dwayne Johnson” by fmovies st (public domain)
“CharlizeCGI092715_47” by mtlsrt04 (public domain)
“Crystal Award Ceremony: Charlize Theron” by World Economic Forum (CC BY-NC-SA 2.0)



Understanding the DCNN Code

Why this is challenging:
• number of nonlinear computations
• uncontrolled nature of training data



Number of non-linear operations

• Why do they work? 
• 39.8 million 

computations between 
image and 
representation!

12/12/18
Face representation 512 element vector

Sankaranayaran et al. (2015)
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• Why does it work? 
• DCNNs designed to 

model primate visual 
system

• 100’s of millions 
computations between 
image and categorical 
representation in 
inferotemporal cortex!

Grill-Spector et al., 2014

Visual Cortex



Uncontrolled Image Training 
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Network Training
Web-scraped in-the-wild images

• millions of face images
• 10’s of thousands of identities

• No control over:
– viewpoint, illumination, occlusion, image quality, etc.
– number of images per identity
– diversity of images per identity

12/12/18



Goal

• understand face representations in DCNNs that 
achieve robust face recognition

• Why is this important?
– face recognition software makes errors
– anticipating these errors requires understanding
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Approach

• visualize the similarity “space” of face representations
– highly structured

• probe an “uncontrolled” network with controlled 
images and visualize representations of image 
variables
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Approach

• visualize the space of face representations
– highly structured 

• (Parde et al., 2017)

• probe the network with controlled images and 
visualize representations of image variables
– Hill et al. (in prep.)
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Networks
• analyze top-level features from state-of-the-art DCNNs:

– Network A (Chen et al., 2015) 
– Network B (Sankaranarayanan et al., 2016)

• developed for IARPA Janus Competition
• trained on CASIA Webface database

– 490,000+ images, 10,000+ identities

• top-level feature descriptor length: 
– Network A –> 320 features
– Network B –> 512 features

• Test set: 25,787 images of 500 identities
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(Chen et al., 2015) 
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(Sankaranarayanan et al., 2016)



Visualization

• Face similarity space 
– structure of the space of 25K in-the-wild images 

12/12/18



12/12/18



12/12/18



12/12/18



12/12/18



Structure of the DCNN Space 
Codes Image Quality
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And also, viewpoint

• visualized 1 identity in a face space made from 
the top-level features of DCNN

• 1 identity = many images and videos

• embedded in visualization of 25K test images
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Assumption
• to achieve robust face recognition DCNNs 

– create a representation that transcends the image data
– deletes or compensates for nuisance variables 

• view
• illumination 
• etc.

– representation eliminates image data to extract identity
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Not what DCNNs do.

12/12/18



Goal
• investigate organization of information encoded in top-level 

representation
– identity
– gender
– viewpoint
– illumination

• Approach
– -> probe “in-the-wild” network with “in-the-lab” dataset



Two types of image data

• “in-the-wild” images
– often web-scraped
– unbalanced (identity, viewpoint, etc.)
– unconstrained viewing conditions

• “in the lab” controlled laser-scanned faces (Blanz & Vetter, 1999)

– can be rendered under precise, arbitrary conditions



Experiments

• 1 - create DCNN “face similarity space” from 
uncontrolled images (Chen et al., 2015; Ranjan et al., 2017)

– project controlled images into the face space 
– “see the DCNN representation of image and identity

features”

• 2 - apply morphing to manipulate facial distinctiveness
– project caricatured images into the uncontrolled space
– understand representation of identity in DCNNs



Face identification DCNN
(Chen, Patel, & Chellappa, 2016)

• identity training (Network A)
– 494,414 face images of 10,575 identities
– CASIA-WebFace dataset (Yi, Lei, Liao, & Li, 2014)

• training images varied widely in
– illumination
– viewpoint
– quality (blur, facial occlusion, etc.)



Face Identification Performance
(Chen, Patel, & Chellappa, 2016)

• state-of-the-art in 2016
– developed for IARPA Janus competition
– performs well on IJB-A dataset (Klare et al., 2015)

– performs as well as forensically trained fingerprint 
examiners on a challenging test of face identification 
(Phillips , et al., 2018)



Controlled Face Images

• MPI Faces dataset (Troje & Bülthoff, 1996)

• 133 laser-scanned face identities
– 65 male, 68 female

• laser-scan allows rendering varied systematically in:
– viewpoint (5 levels from frontal to profile)
– illumination (2 levels: ambient, spotlight)



0° 20° 30° 45° 60°

ambient:

spotlight:

Example Face Identity



Data to be analyzed

• stimulus images input into DCNN
• analyses done on top-layer DCNN output



Face space visualizations

• same data coded to see: 
• identity
• gender
• illumination
• viewpoint
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IDENTITY
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face identification 
accuracy:

AUC = 0.997
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Meta-data Prediction

• gender
– percent correct: 90.98%, p < .01

• illumination
– percent correct: 97.44%, p < .01

• viewpoint prediction
– average error: 7.97° (SD = 6.02) , p < .01



So far…
• DCNN trained for identity discrimination retains 

information about non-identity variables
– gender
– viewpoint
– illumination

• hierarchically organized 

• image and identity information 
– can be read-out linearly linearly



Understanding Facial Identity

• Manipulate facial distinctiveness 
– 3D Morphable model or Active Appearance Model
– Morph laser scans (Blanz & Vetter, 1999)



0%            50%              100%  125%
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Identity Strength Variation

25%          50%           75%         100%         125%

(veridical)    (caricature)
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Identity
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Implications
• DCNN face space -> hierarchically nested pattern of similarity

• gender > identity > illumination > viewpoint

• arises spontaneously from network trained for identity

• shows coding flexibility when identity info is weak!

• Other variables??? Demographics etc.?
– Future work!
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Thank you!

Matt Hill
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Grill-Spector & Weiner, Nature Reviews Neuroscience 2014

To understand the role of ventral temporal cortex (VTC) in 
categorization we adapted Marr’s framework to modern 

neuroscience
Implementation: How are 
representations physically 

implemented in VTC?

Computations: What 
are the computational 

goals of VTC?

Representations: How 
does VTC represent 

information to support 
computations?
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What are these features?

• Not generic across categories (mostly)
– athletic, masculine

• single features encompass multiple spatial 
scales and multiple shapes 

• constellations of features
• map easily onto words that entail 

constellations of features in a non-visual 
way?
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Approach

• visualize the space of face representations
– highly structured

• analyze information retained in the feature codes
– classifiers to predict viewpoint, illumination, etc.

• probe the network with controlled images and 
visualize representations of image variables
– Hill et al. (almost submitted!). 
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